48 research outputs found

    Principles of protein structure: An established Internetā€based course in structural biology

    Get PDF
    The Department of Crystallography at Birkbeck College, London, UK, has been running a oneā€year, partā€time accredited graduate course, ā€˜Principles of Protein Structureā€™, entirely over the Internet since 1996. Students on this course learn the basic principles of the increasingly important subject of structural biology using software programs such as Rasmol and Chime to visualize and manipulate molecular structures in three dimensions. They interact with their tutors, based at Birkbeck, using email and textā€based teleconferencing, and can test their knowledge with multiple choice quizzes on the Web. Over 200 students from thirty countries registered for this course in the last four years. Forty, from central and eastern Europe, were supported by bursaries from the Open Society Institute. The course has been well received by students and its success led us to introduce a similar course in protein crystallography

    The ninth International Conference of Anticancer Research, 6ā€“10 October 2014, Sithonia, Greece

    Get PDF
    The ninth conference of the International Institute for Anticancer Research, held in Sithonia, Greece in October 2014, included over 700 abstracts presented in 79 separate sessions and featured a wide range of topics in basic and clinical cancer research. This report describes a small but representative sample of these sessions. It covers some recent developments in research into the basic signal transduction pathways involved in carcinogenesis; a special session on the role of homeobox genes in cancer development; and clinical sessions covering advances in breast cancer, haematological cancers, and chemotherapy

    Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis

    Get PDF
    Ā© 2018 The Authors. Published under the terms of the CC BY 4.0 license Hypoxia is a hallmark of solid tumours and a key physiological feature distinguishing cancer from normal tissue. However, a major challenge remains in identifying tractable molecular targets that hypoxic cancer cells depend on for survival. Here, we used SILAC-based proteomics to identify the orphan G protein-coupled receptor GPRC5A as a novel hypoxia-induced protein that functions to protect cancer cells from apoptosis during oxygen deprivation. Using genetic approaches invitro and invivo, we reveal HIFs as direct activators of GPRC5A transcription. Furthermore, we find that GPRC5A is upregulated in the colonic epithelium of patients with mesenteric ischaemia, and in colorectal cancers high GPRC5A correlates with hypoxia gene signatures and poor clinical outcomes. Mechanistically, we show that GPRC5A enables hypoxic cell survival by activating the Hippo pathway effector YAP and its anti-apoptotic target gene BCL2L1. Importantly, we show that the apoptosis induced by GPRC5A depletion in hypoxia can be rescued by constitutively active YAP. Our study identifies a novel HIF-GPRC5A-YAP axis as a critical mediator of the hypoxia-induced adaptive response and a potential target for cancer therapy

    Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation

    Get PDF
    Objective: Colorectal cancer (CRC) is a major contributor to cancer mortality and morbidity. LIM kinase 2 (LIMK2) promotes tumour cell invasion and metastasis. The objectives of this study were to determine how LIMK2 expression is associated with CRC progression and patient outcome, and to use genetically modified Drosophila and mice to determine how LIMK2 deletion affects gastrointestinal stem cell regulation and tumour development.<p></p> Design: LIMK2 expression and activity were measured by immunostaining tumours from CRC-prone mice, human CRC cell lines and 650 human tumours. LIMK knockdown in Drosophila or Limk2 deletion in mice allowed for assessment of their contributions to gastrointestinal stem cell homeostasis and tumour development.<p></p> Results: LIMK2 expression was reduced in intestinal tumours of cancer-prone mice, as well as in human CRC cell lines and tumours. Reduced LIMK2 expression and substrate phosphorylation were associated with shorter patient survival. Genetic analysis in Drosophila midgut and intestinal epithelial cells isolated from genetically modified mice revealed a conserved role for LIMK2 in constraining gastrointestinal stem cell proliferation. Limk2 deletion increased colon tumour size in a colitis-associated colorectal mouse cancer model.<p></p> Conclusions: This study revealed that LIMK2 expression and activity progressively decrease with advancing stage, and supports the hypothesis that there is selective pressure for reduced LIMK2 expression in CRC to relieve negative constraints imposed upon gastrointestinal stem cells.<p></p&gt

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy
    corecore